Arbogodaï, a New Approach for Decision Trees
نویسندگان
چکیده
Decision tree methods generally suppose that the number of categories of the attribute to be predicted is fixed. Breiman et al., with their Twoing criterion in CART, considered gathering the categories of the predicted attribute into two superclasses. In this paper, we propose an extension of this method. We try to merge the categories in an optimal unspecified number of superclasses. Our method, called Arbogodäı, allows during tree growing to group categories of the target variable as well as categories of the predictive attributes. At the end, the user can chose to generate either a set of single rules or or a set of multi-conclusion rules that provide interval like predictions.
منابع مشابه
A New Algorithm for Optimization of Fuzzy Decision Tree in Data Mining
Decision-tree algorithms provide one of the most popular methodologies for symbolic knowledge acquisition. The resulting knowledge, a symbolic decision tree along with a simple inference mechanism, has been praised for comprehensibility. The most comprehensible decision trees have been designed for perfect symbolic data. Classical crisp decision trees (DT) are widely applied to classification t...
متن کاملAn Efficient Predictive Model for Probability of Genetic Diseases Transmission Using a Combined Model
In this article, a new combined approach of a decision tree and clustering is presented to predict the transmission of genetic diseases. In this article, the performance of these algorithms is compared for more accurate prediction of disease transmission under the same condition and based on a series of measures like the positive predictive value, negative predictive value, accuracy, sensitivit...
متن کاملDecision trees with optimal joint partitioning
Decision tree methods generally suppose that the number of categories of the attribute to be predicted is fixed. Breiman et al., with their Twoing criterion in CART, considered gathering the categories of the predicted attribute into two supermodalities. In this article, we propose an extension of this method. We try to merge the categories in an optimal unspecified number of supermodalities. O...
متن کاملSolving New Product Selection Problem by a New Hierarchical Group Decision-making Approach with Hesitant Fuzzy Setting
Selecting the most suitable alternative under uncertainty is considered as a critical decision-making problem that affects the success of organizations. In the selection process, there are a number of assessment criteria, considered by a group of decision makers, which often could be established in a multi-level hierarchy structure. The aim of this paper is to introduce a new hierarchical multi...
متن کاملDIAGNOSIS OF BREAST LESIONS USING THE LOCAL CHAN-VESE MODEL, HIERARCHICAL FUZZY PARTITIONING AND FUZZY DECISION TREE INDUCTION
Breast cancer is one of the leading causes of death among women. Mammography remains today the best technology to detect breast cancer, early and efficiently, to distinguish between benign and malignant diseases. Several techniques in image processing and analysis have been developed to address this problem. In this paper, we propose a new solution to the problem of computer aided detection and...
متن کامل